Uncountable graphs and invariant measures on the set of universal countable graphs

نویسندگان

  • Fedor Petrov
  • Anatoly Vershik
چکیده

We give new examples and describe the complete lists of all measures on the set of countable homogeneous universal graphs and Ksfree homogeneous universal graphs (for s ≥ 3) that are invariant with respect to the group of all permutations of the vertices. Such measures can be regarded as random graphs (respectively, random Ks-free graphs). The well-known example of Erdös–Rényi (ER) of the random graph corresponds to the Bernoulli measure on the set of adjacency matrices. For the case of the universal Ks-free graphs there were no previously known examples of the invariant measures on the space of such graphs. The main idea of our construction is based on the new notions of measurable universal, and topologically universal graphs, which are interesting themselves. The realization of the construction can be regarded as two-step randomization for universal measurable graph : ”randomization in vertices” and ”randomization in edges”. For Ksfree, s ≥ 3 there is only randomization in vertices of the measurable graphs. The completeness of our lists is proved using the important theorem by D. Aldous about S∞-invariant matrices, which we reformulate in appropriate way.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant measures on the set of graphs and homogeneous uncountable universal graphs

We describe the set of all invariant measures on the spaces of universal countable graphs and on the spaces of universal countable triangles-free graphs. The construction uses the description of the S∞-invariant measure on the space of infinite matrices in terms of measurable function of two variables on some special space. In its turn that space is nothing more than the universal continuous (B...

متن کامل

Invariant measures and homogeneous uncountable universal graphs

We describe the set of all invariant measures on the spaces of universal countable graphs and on the spaces of universal countable triangles-free graphs. The construction uses the description of the S∞-invariant measure on the space of infinite matrices in terms of measurable function of two variables on some special space. In its turn that space is nothing more than the universal continuous (B...

متن کامل

2 4 Ju l 1 99 5 REPRESENTING EMBEDDABILITY AS SET INCLUSION June 1995 Menachem

A few steps are made towards representation theory of em-beddability among uncountable graphs. A monotone class of graphs is defined by forbidding countable subgraphs, related to the graph's end-structure. Using a com-binatorial theorem of Shelah it is proved:-The complexity of the class in every regular uncountable λ > ℵ 1 is at least λ + + sup{µ ℵ 0 : µ + < λ}-For all regular uncountable λ > ...

متن کامل

Distance-based topological indices of tensor product of graphs

Let G and H be connected graphs. The tensor product G + H is a graph with vertex set V(G+H) = V (G) X V(H) and edge set E(G + H) ={(a , b)(x , y)| ax ∈ E(G) & by ∈ E(H)}. The graph H is called the strongly triangular if for every vertex u and v there exists a vertex w adjacent to both of them. In this article the tensor product of G + H under some distancebased topological indices are investiga...

متن کامل

On Relation between the Kirchhoff Index and Laplacian-Energy-Like Invariant of Graphs

Let G be a simple connected graph with n ≤ 2 vertices and m edges, and let μ1 ≥ μ2 ≥...≥μn-1 >μn=0 be its Laplacian eigenvalues. The Kirchhoff index and Laplacian-energy-like invariant (LEL) of graph G are defined as Kf(G)=nΣi=1n-1<...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Random Struct. Algorithms

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2010